How to... Compute Eigenvalues and -vectors

Given: \quad A quadratic matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$.
Wanted: Eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{C}$ and vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ such that

$$
\boldsymbol{A} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{v}_{\mathrm{i}} \quad i=1, \ldots, n
$$

and algebraic and geometric multiplicities $\mu_{\mathcal{A}}\left(\lambda_{i}\right)$ and $\gamma_{A}\left(\lambda_{i}\right)$.

- Example

We consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & 1 & 0 \\
-2 & 2 & 3
\end{array}\right) \in \mathbb{R}^{3 \times 3}
$$

1 Computation of the characteristic polynomial
Compute the matrix $\boldsymbol{A}-\lambda \cdot \mathbf{I}_{n}$ (i.e. subtract λ from every diagonal element of \boldsymbol{A}). Then compute the characteristic polynomial $\mathrm{P}_{\boldsymbol{A}}(\lambda)$ of \boldsymbol{A}, that is the determinant of the matrix set up before, i.e.,

$$
P_{\boldsymbol{A}}(\boldsymbol{\lambda})=\operatorname{det}\left(\boldsymbol{A}-\lambda \cdot \mathbf{I}_{\mathrm{n}}\right) .
$$

The result is a polynomial in the variable λ.

First, we compute the matrix

$$
A-\lambda \cdot \mathbf{I}_{3}=\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & 1 & 0 \\
-2 & 2 & 3
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)=\left(\begin{array}{ccc}
1-\lambda & 3 & 0 \\
0 & 1-\lambda & 0 \\
-2 & 2 & 3-\lambda
\end{array}\right)
$$

and then the characteristic polynomial

$$
\begin{aligned}
P_{A}(\lambda) & =\operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 3 & 0 \\
0 & 1-\lambda & 0 \\
-2 & 2 & 3-\lambda
\end{array}\right) \\
& =(3-\lambda) \cdot \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 3 \\
0 & 1-\lambda
\end{array}\right)=(3-\lambda)(1-\lambda)^{2} .
\end{aligned}
$$

2 Computation of the eigenvalues

Compute the roots of the characteristic polynomial, i.e., solve

$$
0 \stackrel{!}{=} \mathrm{P}_{\mathbf{A}}(\boldsymbol{\lambda})=\operatorname{det}\left(\boldsymbol{A}-\lambda \cdot \mathbf{I}_{n}\right)
$$

for λ. This equation has n complex solutions (but maybe less than \mathfrak{n} real solutions).

We want to compute the roots of $\mathrm{P}_{\boldsymbol{A}}(\lambda)$. Thus, we solve

$$
(3-\lambda)(1-\lambda)^{2}=0 .
$$

This equation has the solutions $\lambda_{1}=3, \lambda_{2}=1$, and $\lambda_{3}=1$. Thus, the matrix \boldsymbol{A} has the eigenvalues 1 and 3 .

3 Computation of the eigenvectors

For every (distinct) eigenvalue λ_{i} solve the system of linear equations

$$
\left(\boldsymbol{A}-\lambda_{i} \mathbf{I}_{n}\right) \boldsymbol{v}=\mathbf{0}
$$

This system must have infinitely many solutions. The set of all solutions to this system of equations is called eigenspace of the eigenvalue λ_{i}. Any vector from this solution set (except for the zero vector) is an eigenvalue.

We want to compute the eigenspaces of the eigenvalues $\lambda=1$ and $\lambda=3$.
For $\lambda=1$ need to solve

$$
\left(\begin{array}{ccc}
0 & 3 & 0 \\
0 & 0 & 0 \\
-2 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The solution to this system of linear equations is

$$
\mathcal{L}_{\lambda=1}=\left\{\left.\alpha \cdot\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} .
$$

Thus the set $\mathcal{L}_{\lambda=1}$ is the eigenspace of $\lambda=1$, and every vector $\alpha \cdot(1,0,1)^{\top}$ with $\alpha \neq 0$ is an eigenvector for $\lambda=1$.

For $\lambda=3$ need to solve

$$
\left(\begin{array}{ccc}
-2 & 3 & 0 \\
0 & -2 & 0 \\
-2 & 2 & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

The solution to this system of linear equations is

$$
\mathcal{L}_{\lambda=3}=\left\{\left.\alpha \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \right\rvert\, \alpha \in \mathbb{R}\right\} .
$$

Thus the set $\mathcal{L}_{\lambda=3}$ is the eigenspace of $\lambda=3$, and every vector $\alpha \cdot(0,0,1)^{\top}$ with $\alpha \neq 0$ is an eigenvector for $\lambda=3$.

4 Algebraic and geometric multiplicities

For every eigenvalue λ_{i} determine the multiplicity of this root in $P_{A}(\lambda)$, i.e. count how often this value appears in the solution of $\mathrm{P}_{\mathrm{A}}(\lambda)=0$. This number is the algebraic multiplicity $\mu_{\mathcal{A}}\left(\lambda_{i}\right)$ of λ_{i}.
The dimension (the maximal number of linear independent vectors) in the eigenspace of λ_{i} is the geometric multiplicity $\gamma_{A}\left(\lambda_{i}\right)$ of the eigenvalue λ_{i}.

As it can be seen in step 2, the root $\lambda=3$ appears once in $\mathrm{P}_{\boldsymbol{A}}(\lambda)$ and the root $\lambda=1$ appears twice in $P_{A}(\lambda)$. Thus the algebraic multiplicities are

$$
\mu_{\mathcal{A}}(3)=1 \quad \mu_{\mathrm{A}}(1)=2 .
$$

Both eigenspaces are just sets of multiples of a vector, thus the dimension of both eigenspaces is 1 . This means the geometric multiplicities are

$$
\gamma_{A}(3)=1 \quad \gamma_{A}(1)=1
$$

